Skip to main content

· 2 min read
Dear Colleagues,

I am pleased to let you know that I have been appointed as Editorial Board of ComTech and kindly invite you to submit your works to journal ComTech. ComTech is a semi-annual journal, published the issue every June and December. The journal invites professionals in education, research, and entrepreneurship to participate in disseminating ideas, concepts, new theories, or science development in the field of Information Systems, Architecture, Civil Engineering, Computer Engineering, Industrial Engineering, Food Technology, Computer Science, Mathematics, and Statistics. ComTech has been accredited by Directorate General of Higher Education, Ministry of Education and Culture, Republic of Indonesia (DIKTI) under the decree number 3/E/KPT/2019 (SINTA 2) and indexed by CrossRef, ASEAN Citation Index, Directory of Open Access Journals (DOAJ), Science and Technology Index 2 (SINTA2), Garda Rujukan Digital (Garuda), Microsoft Academic Search, Google Scholar, etc. There will be an article-processing charge (APC) for the accepted papers to publish the paper under Open Access license (Creative Commons Attribution-ShareAlike 4.0 International License). The APC fee is Rp. 2.000.000,00 (IDR) and the author will receive a complimentary hard copy of our journal. However, the APC fee is FREE-of-CHARGE for international authors.

Please consider contributing to this journal and thank you for your consideration.

Dr. Muhammad Syafrudin

Editorial Board
Journal link: ComTech

· One min read

Abstract

Extracting information from individual risk factors provides an effective way to identify diabetes risk and associated complications, such as retinopathy, at an early stage. Deep learning and machine learning algorithms are being utilized to extract information from individual risk factors to improve early-stage diagnosis. This study proposes a deep neural network (DNN) combined with recursive feature elimination (RFE) to provide early prediction of diabetic retinopathy (DR) based on individual risk factors. The proposed model uses RFE to remove irrelevant features and DNN to classify the diseases. A publicly available dataset was utilized to predict DR during initial stages, for the proposed and several current best-practice models. The proposed model achieved 82.033% prediction accuracy, which was a significantly better performance than the current models. Thus, important risk factors for retinopathy can be successfully extracted using RFE. In addition, to evaluate the proposed prediction model robustness and generalization, we compared it with other machine learning models and datasets (nephropathy and hypertension–diabetes). The proposed prediction model will help improve early-stage retinopathy diagnosis based on individual risk factors.

Published in: Mathematics
DOI: 10.3390/math8091620

· 2 min read

Abstract

Detecting self-care problems is one of important and challenging issues for occupational therapists, since it requires a complex and time-consuming process. Machine learning algorithms have been recently applied to overcome this issue. In this study, we propose a self-care prediction model called GA-XGBoost, which combines genetic algorithms (GAs) with extreme gradient boosting (XGBoost) for predicting self-care problems of children with disability. Selecting the feature subset affects the model performance; thus, we utilize GA to optimize finding the optimum feature subsets toward improving the model’s performance. To validate the effectiveness of GA-XGBoost, we present six experiments: comparing GA-XGBoost with other machine learning models and previous study results, a statistical significant test, impact analysis of feature selection and comparison with other feature selection methods, and sensitivity analysis of GA parameters. During the experiments, we use accuracy, precision, recall, and f1-score to measure the performance of the prediction models. The results show that GA-XGBoost obtains better performance than other prediction models and the previous study results. In addition, we design and develop a web-based self-care prediction to help therapist diagnose the self-care problems of children with disabilities. Therefore, appropriate treatment/therapy could be performed for each child to improve their therapeutic outcome.

Published in: Mathematics
DOI: 10.3390/math8091590

· One min read
Dear Colleagues,

We are pleased to invite you to submit your works to our Special Issue. In this Special Issue, we aim to cover recent advances in artificial intelligence (AI) for healthcare with a sustainability perspective in mind, from both academic researchers and industry developers. Any type of article aligned with the journal (original research, case study, technical report, short communication, and reviews) is welcome for this Special Issue. Topics of interests include, but are not limited to, the following:
  • Health informatics
  • Artificial intelligence in healthcare
  • Personalized healthcare
  • Clinical decision support systems
  • IoT and big data in healthcare
  • Machine learning and deep learning in healthcare
  • Descriptive, diagnostic, predictive analytics in healthcare
  • Data security and privacy in healthcare
  • etc.

  • Please consider contributing to this Special Issue. Thank you for your consideration.

    Dr. Muhammad Syafrudin
    Dr. Ganjar Alfian
    Prof. Dr. Muhammad Anshari
    Assoc. Prof. Dr. Tony Hadibarata
    Guest Editors

    Deadline: 30 September 2021
    Submission link: mdpi.com/si/58663

    · One min read

    Abstract

    Radio frequency identification (RFID) technology can be utilized to monitor tagged product movements and directions for the purpose of inventory management. It is important for RFID gate to identify the several RFID readings such as movement type and direction as well as the static tags (tags that accidentally read by the reader). In this study, random forest (RF) method is utilized to detect the movement type and direction of RFID passive tags. The input features are derived from received signal strength (RSS) and timestamp of tags. The result showed that machine learning models successfully distinguish direction and movement type of tag. In addition, proposed model based on random forest generated accuracy as much as 98.39% and was significantly superior to the other models considered.



    Published in: IEEE Xplore
    DOI: 10.1109/ICST47872.2019.9166196

    · 2 min read

    Abstract

    Heart disease, one of the major causes of mortality worldwide, can be mitigated by early heart disease diagnosis. A clinical decision support system (CDSS) can be used to diagnose the subjects’ heart disease status earlier. This study proposes an effective heart disease prediction model (HDPM) for a CDSS which consists of Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to detect and eliminate the outliers, a hybrid Synthetic Minority Over-sampling Technique-Edited Nearest Neighbor (SMOTE-ENN) to balance the training data distribution and XGBoost to predict heart disease. Two publicly available datasets (Statlog and Cleveland) were used to build the model and compare the results with those of other models (naive bayes (NB), logistic regression (LR), multilayer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF)) and of previous study results. The results revealed that the proposed model outperformed other models and previous study results by achieving accuracies of 95.90% and 98.40% for Statlog and Cleveland datasets, respectively. In addition, we designed and developed the prototype of the Heart Disease CDSS (HDCDSS) to help doctors/clinicians diagnose the patients’/subjects’ heart disease status based on their current condition. Therefore, early treatment could be conducted to prevent the deaths caused by late heart disease diagnosis.

    Published in: IEEE Access
    DOI: 10.1109/ACCESS.2020.3010511

    · One min read

    Abstract

    Predicting future blood glucose (BG) level for diabetic patients will help them to avoid critical conditions in the future. This study proposed Extreme Gradient Boosting (XGBoost), an ensemble learning model to predict the future blood glucose value of diabetic patients. The clinical dataset of Type 1 Diabetes (T1D) patients was utilized and the prediction models were generated to predict future BG of 30 and 60 minutes ahead of time. The prediction models have been tested tofive children who develop T1D and showed that BG prediction model based on XGBoost outperformed other models, with average of Root Mean Square Error (RMSE) are 23.219 mg/dL and 35.800 mg/dL for prediction horizon (PH) 30 and 60 minutes respectively. In addition, the result showed that by utilizing statistical-based features as additional attributes, most of the performance of predictions model were increased.

    Published in: IOP Conference Series: Materials Science and Engineering
    DOI: 10.1088/1757-899X/803/1/012012